Answer:
y = 3cos(2x) + 2
Step-by-step explanation:
A cosine function is represented by y = acos(bx + c) + d
a = amplitude
b = [tex]\frac{2\pi }{\text{Period}}[/tex]
c = horizontal shift
d = vertical shift
Given values of a = 3
period = π = [tex]\frac{2\pi }{b}[/tex]
So, b = [tex]\frac{2\pi }{\pi }=2[/tex]
Horizontal shift c = 0
and d = 2
Therefore, [tex]y=3cos(2x+0)+2[/tex] will be the equation.